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BFKL LO formalism
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• Typical kinematical domain where BFKL effects are
supposed to appear with respect to DGLAP: k2

T ∼ Q2,
and Q2 not too large

• LO BFKL forward jet cross section

• Saddle point approximation and fits to the H1 dσ/dx
data: 2 parameters, αS in exponential (constant and
fitted at LO), and normalisation



BFKL LO formalism

• BFKL LO forward jet cross section, saddle point
approximation:
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• 2 parameters in fits to dσ/dx: N , α



One parenthesis: cross section calculation

• Two difficulties: We need to integrate over the bin in Q2,
xjet, kT to compare with the experimental measurement
and we need to take into account the experimental cuts
(as an example: Ee > 10 GeV, kT > 3.5 GeV,
7 ≤ θJ ≤ 20 degrees....)

• We perform the integration numerically: we chose the
variables for which the cross section is as flat as possible
to avoid numerical difficulties in precision: k2

T /Q2, 1/Q2,
log1/xjet

• We take into account some of the cuts at the integration
level (kT for instance) and the other ones using a toy
Monte Carlo



How to go to BFKL-NLL formalism?

• Simple idea: Keep the saddle point approximation, and
use the BFKL NLO kernel

• Formula at NLL:
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• Only free parameter in the BFKL NLL fit: absolute
normalisation



BFKL NLL and resummation schemes

• NLO BFKL: Corrections were found to be large with
respect to LO, and lead to unphysical results

• NLO BFKL kernels need resummation: to remove
additional spurious singularities in γ and (1 − γ)

• NLO BFKL kernel:

χNLO(γ, ω) = χ(0)(γ, ω) + α(χ1(γ) − χ
(0)
1 (γ))

• χ1(γ): calculated, NLO BFKL eigenvalues (Lipatov,
Fadin, Camici, Ciafaloni)

• χ(0) and χ1(0): ambiguity of resummation at higher
order than NLO, different ways to remove these
singularities, not imposed by BFKL equation, Salam,
Ciafaloni, Colferai

• Transformation of the energy scale: γ → γ − ω/2
(Salam) needed for F2 but not for forward jet cross
sections (the problem is symmetric contrary to F2)



How to determine γC , χ(γC), and χ′′(γC)?

• First step: Knowledge of χNLO(γ, ω, α) from BFKL
equation and resummation schemes (ω is the Mellin
transform of Y )

• Second step: Use implicit equation χ(γ, ω) = ω/α to
compute numerically ω as a function of γ for different
schemes and values of α

• Third step: Numerical determination of saddle point
values γC as a function of α as well as the values of χ
and χ′′

• Study performed for three different resummation
schemes: S3 and S4 from Gavin Salam, and CCS from
Ciafaloni et al.

• For more information: see R. Peschanski, C. Royon, and
L. Schoeffel, Nucl.Phys.B716 (2005) 401,
hep-ph/0411338



γC , χ(γC), and χ′′(γC) as a function of α

Determination of γC , χ(γC), and χ′′(γC) as a function of α
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Fit procedure

• Fit to H1 dσ/dx data only

• Fit using the 6 data points or 5 points only, removing the
lowest x point

• α (constant) is found to be small at LO, of the order of
0.1, and αS(k2

T ) is imposed using the renormalisation
group equation at NLL

fit data set χ2/dof N α

LO 6 pts 13/4 (0.47) 0.42 0.102
LO 5 pts 2.4/3 (0.15) 0.37 0.133

CCS 6 pts 22.0/5 (0.6) 0.91 -
CSS 5 pts 2.4/4 (0.21) 0.95 -



Fit results

• χ2 for CCS: 2.4 (0.2), S3: 15.5 (0.8), S4: 4.2 (0.2)

• Good description of H1 data using BFKL LO and BFKL
NLL formalism, DGLAP-NLO fails to describe the data

• BFKL higher corrections found to be small (We are in
the BFKL-LO region, cut on 0.5 < kT 2/Q2 < 5)
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Comparison with ZEUS data

Comparison with ZEUS dσ/dx and dσ/dQ2 data (similar
with dσ/dkT data)
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Comparison with H1 triple differential data

d σ/dx dpT
2 d Q2 - H1 DATA
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Comparison with H1 triple differential data

• DGLAP NLO predictions cannot describe H1 data in the
full range, and large difference between DGLAP NLO and
DGLAP LO results (DGLAP NLO includes part of the
small x resummation effects)

• BFKL LO describes the H1 data when r = k2
T /Q2 is

close to 1

• BFKL LO fails outside the region r ∼ 1 specially at high
Q2

• BFKL higher order corrections found to be small (as
expected) when r ∼ 1

• Higher order BFKL corrections larger when r further
away from 1, where the BFKL NLL prediction is closer to
the DGLAP one (Q2 resummation effects are starting to
be large)

• BFKL NLL gives a good description of data over the full
range: first success of BFKL higher order corrections,
shows the need of these corrections



Comparison with H1 triple differential data

• Comparison between the three resummation schemes:
CCS, S1 and S3

• CCS and S4 lead to similar description of data while S3
is slightly disfavoured

d σ/dx dpT
2 d Q2 - H1 DATA
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Conclusion

• DGLAP NLO fails to describe forward jet data

• First BFKL NLL description of H1 and ZEUS forward jet
data: very good description

• The BFKL scale which is used in the exponential αS(k2
T )

can describe the H1 cross section measurements

• Higher order corrections small when r = kt2/Q2 ∼ 1 and
larger when r is further away from 1 as expected

• BFKL NLL formalism leads to a better description than
the BFKL LO one for the triple differential cross section:
Resummed BFKL NLO kernels include part of the
evolution in Q2


